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Abstract
We explore various aspects of the quantum entanglement dynamics of systems
of two, three and four qubits interacting with an environment at zero temperature
in a non-Markovian regime, as described by the paradigmatic model recently
studied by Bellomo et al (2007 Phys. Rev. Lett. 99 160502). We consider
important families of initial states for the alluded systems. The average, typical
entanglement evolution associated with each of these families is determined,
and its relation with the evolution of the global degree of mixedness of
the multi-qubit system is explored. For three and four qubits we consider
the family of initial states equivalent under local unitary transformations to
the |GHZ〉 and |W 〉 states, and compare their average behavior with the
average behavior exhibited by initial maximally entangled two-qubit states.
Furthermore, in the case of two qubits, the evolution of other manifestations
of entanglement, related to measurable quantities, is also investigated. In
particular, we consider the Mintert–Buchleitner concurrence lower bound
and an entanglement indicator based upon the violation of local uncertainty
relations.

PACS numbers: 03.67.Mn, 03.65.Yz

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Entanglement and decoherence constitute two fundamental ingredients in the present
understanding of the quantum fabric of the physical world [1–4]. The diverse manifestations of
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quantum entanglement are nowadays the focus of intense theoretical and experimental research
efforts. Quantum entanglement plays an essential role, for example, in connection with the
emergence of the classical picture of the macroscopic world from a quantum mechanical
substratum [4]. It also provides a deep physical justification for the basic tenets of quantum
statistical mechanics [5]. Moreover, intriguing recent developments suggest that quantum
entanglement may be relevant for explaining the origin of the macroscopic ‘arrow of time’ [6].
On the other hand, the actual creation and manipulation of multi-partite entangled states in the
laboratory lie at the heart of spectacular new technological developments, such as quantum
computation [2, 3], and quantum metrology [7]. Quantum entanglement and decoherence are
closely related to each other. In fact, the phenomenon of decoherence basically consists of a
family of effects that occur due to the interaction (and associated entanglement development)
between quantum systems and their environments [3, 4]. Physical systems in nature are
not usually in complete isolation and interact with their environments in some way. As
a consequence of this interaction, in most cases, some entanglement develops between the
system and the environment (there are special instances, however, where a system may interact
with another system without developing entanglement with it). The system–environment
entanglement leads to the suppression of typical quantum features of the system, such as
the interference between different systems’ states. This constitutes the basic idea behind the
‘decoherence program’ for explaining the quantum-to-classical transition [4].

The amount of entanglement between the different constituent parts of a multi-partite
quantum system tends to decrease as the alluded composite system undergoes decoherence.
This decay of entanglement has recently attracted the interest of many researchers [8–17]
because it constitutes one of the most difficult obstacles that have to be overcome to develop
quantum technologies requiring the controlled manipulation of entangled states [3]. A
remarkable recent discovery is that, in some cases, entanglement can disappear completely in
finite times. This effect is known as entanglement sudden death (ESD) [8–15] and has been
observed experimentally by Almeida et al [16]. Besides its theoretical importance, ESD is
also a phenomenon of considerable relevance from the practical point of view because the
actual implementation of quantum computation and other quantum information tasks crucially
depends on the longevity of entanglement in multi-qubit systems.

To study the consequences of the interaction between a quantum mechanical system and its
surroundings the system must be treated as an open quantum system (see [18] for an excellent,
comprehensive and updated discussion on open quantum systems). In order to succeed in the
development of useful devices for quantum information processing it is imperative to achieve
a systematic characterization and understanding of the above-mentioned effects arising from
the interaction with the environment. The aim of the present work is to explore some typical
features of the entanglement dynamics of systems of independent qubits each interacting with
a reservoir in a regime where the non-Markovian effects are important. In other words, we are
going to consider reservoirs whose correlation times are greater than, or of the same order as,
the relaxation time over which the state of the system changes [18]. Interesting previous work
on the entanglement dynamics of two-qubit systems interacting with an environment in the
non-Markovian regime has been reported by Bellomo, Lo Franco and Compagno (BFC) in a
recent series of papers [10–12] (see also [14]). A remarkable phenomenon studied by BFC is
that, for certain initial states, there is entanglement sudden death and afterward entanglement
sudden revival. BFC focused their attention on initial states described by density matrices
of the ‘X-form’, which admit a particularly elegant analytical treatment. We will extend the
work by BFC in various directions. We will investigate the average, typical entanglement
dynamics associated with some relevant families of initial states of two-qubit, three-qubit and
four-qubit systems. We will explore the relation between the time evolution of the amount of
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entanglement of these multi-qubit systems and their degrees of mixedness. In the case of two
qubits, we will also investigate the possibility of detecting the disappearance of entanglement
and its subsequent revival using two recently advanced entanglement indicators.

2. Qubit-reservoir model

We are going to consider the paradigmatic model discussed in [10], which is based on the
‘qubit + reservoir’ Hamiltonian

H = ω0σ+σ− +
∑

k

ωkb
†
kbk + (σ+B + σ−B†) (1)

where B = ∑
k gkbk , ω0 denotes the transition frequency of the two-level system (that is,

the qubit) and σ∓ stands for the system’s raising and lowering operators. The reservoir is
represented as a set of field modes, b

†
k and bk, being the concomitant creation and annihilation

operators associated with the k-mode. These field modes are characterized by frequencies ωk

and coupling constants gk with the two-level system. The Hamiltonian (1) may describe, for
instance, a qubit consisting of the excited and ground electronic states of a two-level atom that
interacts with the quantized electromagnetic modes of a high-Q cavity. The assumed effective
spectral density of the reservoir is

J (ω) = 1

2π

γ0λ
2

(ω − ω0)2 + λ2
, (2)

where γ0 and λ are positive parameters with dimensions of inverse time. The parameter λ,
giving the width of J (ω), is related to the reservoir’s correlation time τB by τB ≈ λ−1. The
parameter γ0 is connected with the system’s relaxation time τR via τR ≈ γ −1

0 (see [10] for
details). In the strong-coupling, non-Markovian regime we have γ0 > λ/2. The Hamiltonian
(1) was previously studied by Garraway [19] who obtained the analytical solution for the
concomitant dynamics. The dynamics of the single qubit is described by the density matrix

ρ(t) =
(

ρ11(0)Pt ρ10(0)
√

Pt

ρ01(0)
√

Pt ρ00(0) + ρ11(0)(1 − Pt)

)
, (3)

where ρij (0) are the initial density matrix elements of the qubit and the function Pt is given
(in the non-Markovian regime [10]) by

Pt = e−λt

[
cos

(
dt

2

)
+

λ

d
sin

(
dt

2

)]2

(4)

with d =
√

2γ0λ − λ2. The time evolution of two non-interacting qubits, each of them in
contact with an independent reservoir and, consequently, individually evolving according to
(3), is then given by a time-dependent statistical operator whose elements with respect to the
computational basis {|1〉 ≡ |11〉, |2〉 ≡ |10〉, |3〉 ≡ |01〉, |4〉 ≡ |00〉} are [10]

ρT
11(t) = ρT

11(0)P 2
t ; ρT

22(t) = ρT
22(0)Pt + ρT

11(0)Pt (1 − Pt),

ρT
33(t) = ρT

33(0)Pt + ρT
11(0)Pt (1 − Pt); ρT

44(t) = 1 − [
ρT

11 + ρT
22 + ρT

33

]
,

ρT
12(t) = ρT

12(0)P
3/2
t ; ρT

13(t) = ρT
13(0)P

3/2
t ,

ρT
14(t) = ρT

14(0)Pt ; ρT
23(t) = ρT

23(0)Pt ,

ρT
24(t) =

√
Pt

[
ρT

24(0) + ρT
13(0)Pt (1 − Pt)

]
,

ρT
34(t) =

√
Pt

[
ρT

34(0) + ρT
12(0)Pt (1 − Pt)

]
,

(5)
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with ρT
ij (t) = ρT ∗

ji (t) (that is, the matrix ρT (t) is Hermitian). It is possible to derive equations
similar to (5) corresponding to the time-dependent density matrix associated with the evolution
of a set of N non-interacting qubits each of them interacting with its ‘own’ reservoir. In
section 5 we are going to consider the three-qubit case.

3. Typical entanglement dynamics for two qubits

3.1. Generation of random states within a family of initial states

In order to investigate the average features characterizing the entanglement dynamics
associated with a given family of initial states we compute the average properties of the
concomitant evolutions. To determine these averages we generate random initial states (within
the alluded family) uniformly distributed according to the Haar measure [20, 21]. We shall
consider a family of maximally entangled initial states, a family of partially entangled pure
initial states all sharing the same amount of entanglement and a family of Werner states.

To study the typical, average behavior of the entanglement dynamics of a pair of qubits
evolving from an initial maximally entangled state we represent the initial states |	e〉 as [20]

|	e〉 = (I2 ⊗ U1) |	0〉 (6)

where |	0〉 = 1√
2
(|01〉 + |10〉), I2 denotes the two-dimensional identity matrix and U1 is a

unitary matrix on SU(2). This unitary matrix can be conveniently parameterized as

U1 =
(−sin ϑ e−iθ2 cos ϑ eiθ1

cos ϑ e−iθ1 sin ϑ eiθ2

)
(7)

where θ1,2 ∈ [0, 2π ] and ϑ =∈ [0, π/2]. In terms of the three parameters θ1, θ2 and ϑ , the
maximally entangled state reads

|	e〉 = 1√
2

⎡
⎢⎢⎣

cos ϑ eiθ1

sin ϑ eiθ2

−sin ϑ e−iθ2

cos ϑ e−iθ1

⎤
⎥⎥⎦ , (8)

where |	e〉 is represented as a column vector in terms of its coefficients with respect to the
computational basis. To generate the initial states we generate random (single-qubit) unitary
matrices U uniformly distributed according to the Haar measure. The angles θi are generated
randomly such that they are uniformly distributed in [0, 2π ], while ϑ is distributed in the
interval [0, π/2] according to the distribution sin(2ϑ). This distribution can be obtained by
setting ϑ = arcsin[ε1/2] with ε uniformly distributed in [0, 1].

More generally, random pure states exhibiting a fixed, prescribed amount of entanglement
can be generated using the representation

|	α〉 = (I2 ⊗ U1)(
√

1 − α2|01〉 + α|10〉), (9)

which leads to the parameterization

|	α〉 =

⎡
⎢⎢⎣

√
1 − α2 cos ϑ eiθ1√
1 − α2 sin ϑ eiθ2

−α sin ϑ e−iθ2

α cos ϑ e−iθ1

⎤
⎥⎥⎦ (10)

where one can change the degree of entanglement by using different values of α. For instance
the value α = 1√

2
will give the maximally entangled states above. The parameters θ1,2 and
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Figure 1. The average value of the concurrence 〈C〉 and its dispersion (〈C2〉 − 〈C〉2)1/2 (left) and
the average value of the linear entropy (right), against the quantity γ0t , for maximally entangled
initial states. All depicted quantities are dimensionless.

ϑ appearing in (10) have to be generated in the same way as in the case of the maximally
entangled states. Note that we are not sampling the full space CP3 of pure states of two qubits.
We are only sampling a family of states equivalent under local unitary transformations to a
given, prescribed state.

3.2. Maximally entangled initial states

In this section we are going to explore the typical, average entanglement dynamics
corresponding to maximally entangled initial states. To this end we generate random
maximally entangled initial states according to the procedure described in the previous section
and compute, for different times, the averages of the concurrence C and the linear entropy
SL = 4

3 [1 − Tr(ρ2)]. The average values of the concurrency (left) and that of the linear
entropy (right) are depicted in figure 1 as a function of the dimensionless quantity γ0t . In all
our computations we set λ = 0.01γ0. The dispersion �C = (〈C2〉 − 〈C〉) 1

2 is also plotted in
figure 1. The dispersion �C is relatively small compared with 〈C〉, meaning that the behavior
of the average 〈C〉 is representative of the typical entanglement dynamics corresponding to
the family of initial maximally entangled states. The same occurs with the other families
of initial states considered in the present work. (Note that �C is not the error in the curve
〈C〉 versus γ0t . The error in this and the other curves depicted in this work is not appreciable
at the scale of the figures.)

Even though, on average, the concurrence does vanish at certain times, it does not stay
equal to zero during finite time intervals. In other words, the finite time intervals of vanishing
entanglement before the entanglement revivals, that are observed for certain initial states, are
not a feature characterizing the average entanglement dynamics. This observation is going
to be of relevance when we later compare the entanglement dynamics of two qubits with the
entanglement behaviors corresponding to three qubits or four qubits.

It is a well-known trend that the amount of entanglement exhibited by quantum states of a
bipartite system tends to decrease as we consider states with increasing degrees of mixedness
(see [21] and references therein). In point of fact, all two-qubit states with a linear entropy
larger than 8/9 have zero entanglement (that is, are separable). The above-mentioned general
trend connecting entanglement and mixedness is consistent with the average behaviors of the
concurrence and the linear entropy during the first half of the initial period of entanglement
decrease observed in figure 1. During this first part of the two-qubit evolution the concurrence
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Figure 2. The average concurrence against the average linear entropy for maximally entangled
initial states (continuous line) and the concurrence of the MEMS (dotted line) against the linear
entropy. All depicted quantities are dimensionless.

(and, consequently, the amount of entanglement) decreases while the degree of mixedness
increases. However, after this first phase of the evolution the pattern changes: the concurrence
and the mixedness increase or decrease together. In particular, during the entanglement
revivals, the entanglement and the degree of mixedness of the two-qubit system tend to adopt
their maximum values at the same time.

When considering the relationship between the amount of entanglement and the degree
of mixedness of two-qubit states, the maximally entangled mixed states (MEMS) play an
important role. The MEMS [28] states are two-qubit states that have the maximum possible
value of the concurrence for a given degree of mixture and their density matrix is given by

ρMEMS =

⎛
⎜⎜⎝

g(γ ) 0 0 γ /2
0 1 − 2g(γ ) 0 0
0 0 0 0

γ /2 0 0 g(γ )

⎞
⎟⎟⎠ (11)

where

g(γ ) =
{
γ /2, γ � 2/3
1/3, γ < 2/3.

(12)

Some aspects of the entanglement dynamics of our two-qubit system can be illuminated if we
consider now the trajectory followed by this system in the mixedness–concurrence plane, and
compare this trajectory with the curve corresponding to the MEMS states. Figure 2 shows a
plot of the average value of the concurrence against the average value of the linear entropy
(continuous line) for maximally entangled initial states. The curve in the (SL − C)-plane
corresponding to the concurrence Cmems associated with maximally entangled mixed states
(MEMS) of linear entropy SL is also depicted (dotted line).

It can be appreciated in figure 2 that the average trajectory in the (SL − C)-plane
associated with maximally entangled initial states has two branches: an upper branch that
stays relatively close to the MEMS curve and a lower branch that departs drastically from
the MEMS. During the first phase of entanglement decrease, the average evolution associated
with maximally entangled initial states describes the complete trajectory depicted in figure 2,
starting with states of maximum entanglement and zero mixedness and ending with states
of zero entanglement and zero mixedness. During the periods of entanglement revival, the
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average evolution follows the lower branch, first in the direction corresponding to an increase of
entanglement and mixedness, and then in the opposite direction. During the first entanglement
revival the two-qubit states reach the point of maximum 〈SL〉 in the 〈SL〉 − 〈C〉 curve, and
retrace part of the upper branch. In the second and later entanglement revivals, the two-qubit
states remain in the lower branch.

The time-averaged amount of entanglement exhibited by an evolving composite system
is also an interesting quantity to investigate. This quantity has already been considered in
previous studies, in various contexts [29, 30]. Entanglement is a valuable resource, and the
time average of the entanglement of a system during a given time interval provides a rough idea
of the amount of entanglement that is available at an instant of time chosen at random during
the alluded interval. We have computed numerically the time average of the concurrence of
the two-qubit system

〈C〉t = 1

τ

∫ τ

0
C(t) dt, (13)

where τ is the time when the concurrence vanishes for the second time (that is, τ corresponds
to the end of the first revival event). In particular we computed 〈C〉t taking the Bell states

|β00〉 = 1√
2
(|00〉 + |11〉) (14)

|β01〉 = 1√
2
(|01〉 + |10〉) (15)

|β10〉 = 1√
2
(|00〉 − |11〉) (16)

|β11〉 = 1√
2
(|01〉 − |10〉) (17)

as initial states, obtaining the values 〈C〉t = 0.225 336 for |β00〉 and |β10〉 and 〈C〉t = 0.376 867
for |β01〉 and |β11〉. A numerical search for the maximum value of 〈C〉t among evolutions
starting with a maximally entangled initial state yielded a maximum value 〈C〉(max.)

t =
0.376 867. This maximum value is achieved by the states |β01〉 and |β11〉.

3.3. Partially entangled pure initial states

The average behavior corresponding to pure, partially entangled initial states is qualitatively
similar to the one corresponding to maximally entangled initial states, but with a 〈SL〉 − 〈C〉
trajectory obviously starting with states of concurrence less than one and zero mixedness (that
is SL = 0). The average behavior, as a function of γ0t , of the concurrence is depicted in
figure 3 for initial states having the same entanglement as the state

|�〉 = α|00〉 +
√

1 − α2|11〉, (18)

for α2 = 1/3. It can be seen in figure 3 that the finite time intervals of zero entanglement
disappear when we consider the average behavior of the above-mentioned states. This is in
clear contrast with the behavior of some particular initial states belonging to the above family
(see the individual case also depicted in figure 3) whose associated trajectories show rather
long intervals with zero entanglement [10].

We obtained an analytical expression linking SL and C during the evolution associated
with individual partially entangled initial states of the form (18). The trajectory on the
(SL − C)-plane corresponding to these initial states is given by

SL =
(

C2

4α2(1 − α2)
− C

2α
√

1 − α2

)
. (19)
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Figure 3. The concurrence for the initial state (18) (dotted line) and the average value of the
concurrence for initial partially entangled pure states having the same entanglement as (18)
(continuous line) as a function of γ0t . In both cases α2 = 1/3. All depicted quantities are
dimensionless.
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Figure 4. Trajectories in the (〈SL〉 − 〈C〉)-plane corresponding to families of initial partially
entangled pure states with a given amount of entanglement. All depicted quantities are
dimensionless.

The average trajectories on the (SL−C)-plane of initial pure states with the same entanglement
(concurrence) as the state (18) are depicted in figure 4 for different values of α.

It transpires from figure 4 that the smaller the initial entanglement, the larger the maximum
degree of mixedness achieved by the two-qubit system during its evolution. Another trend
that can be observed in figure 4 is that the smaller the initial entanglement, the closer the
second branch of the average trajectory is to the 〈C〉 = 0 line. This, of course, is related to
the increasing length of the time intervals of zero entanglement corresponding to initial pure
states of decreasing entanglement.

3.4. Initial mixed states of two qubits

Now we are going to consider the entanglement dynamics associated with mixed initial states
of the Werner form

ρ = γ |	〉〈	| +
1 − γ

4
I (20)
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Figure 5. Average value of the concurrence as a function of γ0t for the initial mixed states
γ |	〉〈	| + 1−γ

4 I with γ = 2
3 . All depicted quantities are dimensionless.
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Figure 6. Average value of the concurrence 〈C〉 against the average linear entropy 〈SL〉 for the
same family of initial mixed states considered in figure 5 (continuous line) and the concurrence of
the maximally entangled mixed states Cmems against SL (dotted line). All depicted quantities are
dimensionless.

where 0 � γ � 1, I is the 4 × 4 identity matrix and |	〉 is a maximally entangled pure state
of the form (6). The state ρ represents a mixture of a maximally entangled pure state and the
completely mixed state I

4 . The state ρ is entangled for γ > 1/3.
In order to study the typical, average behavior of initial mixed states of the form (20) we

randomly generated the maximally entangled states |	〉 (according to the procedure explained
in section 3.1) and then computed the average properties associated with the evolutions
corresponding to the family of states (20).

The results obtained, for γ = 2
3 , are summarized in figures 5 and 6. We can see in these

figures that the behavior of the initial mixed states (20) shares some general features with the
behavior of the maximally entangled initial states considered previously. There is, however,
one important difference (aside from the fact that the trajectory on the (〈SL〉−〈C〉)-plane starts
from an initial state of partial entanglement and finite linear entropy). The lower branch of
the trajectory on the (〈SL〉− 〈C〉)-plane depicted in figure 6 has a long, almost horizontal part
associated with states of very little, almost zero entanglement. This section of the lower branch
corresponds to the time intervals between entanglement death and entanglement revivals in
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figure 5. This means that the existence of finite intervals of basically zero entanglement before
entanglement revivals constitutes a typical, average property exhibited by the family of states
(20).

4. Behavior of some entanglement indicators for two-qubits states

Quantum entanglement gives rise to diverse peculiar properties of entangled states, such as the
violation of Bell inequalities [2]. However, not all entangled states are endowed with all these
special features. Consequently, it is of considerable relevance not only to determine the amount
of entanglement associated with given quantum states, but also to explore which entangled
states do exhibit (and which do not) the different entanglement-related manifestations. The
recent study by Bellomo et al [12] of the violation of Bell inequalities by two qubits interacting
with an environment constituted a notable contribution, within the context of the entanglement
dynamics of open systems, to the above-mentioned line of inquiry. On a similar vein, non-
classical entropic inequalities satisfied by the time-dependent state of two qubits evolving
according to (5) was examined in [15].

Besides its theoretical interest, the exploration of which states do exhibit the different
entanglement-related features is of considerable practical interest because some of the alluded
entanglement manifestations can be used to construct entanglement indicators based on
measurable quantities. In this section we are going to consider two such entanglement
indicators: the Minternt–Buchleitner lower bound for the squared concurrence, and an
entanglement indicator based on local uncertainty relations [27].

4.1. Minternt–Buchleitner lower bound for the squared concurrence

A remarkable indicator of entanglement for quantum states ρAB of bi-partite systems has been
recently advanced by Minternt and Buchleitner (MB) [22, 23]:

EMB[ρAB] = 2 Tr
[
ρ2

AB

] − Tr
[
ρ2

A

] − Tr
[
ρ2

B

]
. (21)

The MB entanglement indicator EMB is particularly interesting because, as was shown by
MB, it is an experimentally measurable quantity that provides a lower bound for the squared
concurrence of ρAB :

C2[ρAB] � EMB[ρAB]. (22)

Last, but certainly not least, the indicator EMB is a practically, mathematically simple to
compute quantity.

It is interesting to examine the behavior of EMB in a time-dependent setting. The
behavior of EMB is compared with that of the squared concurrence C2 in figure 7 where both
quantities are plotted against γ0t for the initial state 1√

2
(|00〉 + |11〉). The average values of

the concurrence squared C2 and of the MB lower bound were also computed for the evolutions
corresponding to initial maximally entangled, randomly generated states. The results obtained
are depicted in figure 8.

The quantum states considered in figures 7 and 8 have Tr
[
ρ2

A

] = Tr[ρ2
B] and,

consequently, for these states we can write EMB[ρAB] = 2
(

Tr[ρ2
AB] − Tr

[
ρ2

A

])
. One can

verify in figures 7 and 8 that, indeed, the quantity EMB constitutes a lower bound for C2. The
results depicted in figure 7 indicate that, for the initial state 1√

2
(|00〉 + |11〉), the lower bound

EMB provides a reasonably good estimate of the amount of entanglement exhibited by the two
qubits during the first period of entanglement decrease. The quantity EMB is also able to detect
the first entanglement revival, at least during the time interval around the peak value exhibited
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Figure 7. The concurrence squared and the MB lower bound EMB, as a function of γ0t , for the
initial state 1√

2
(|00〉 + |11〉). All depicted quantities are dimensionless.
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Figure 8. The averages of the concurrence squared and of the MB lower bound corresponding to
initial maximally entangled states, as a function of γ0t . All depicted quantities are dimensionless.

by C2 in this revival (this interval corresponds, approximately, to one-third of the duration of
the first revival). In contrast, EMB does not detect the second or later entanglement revivals.

As for the typical behavior of the lower bound EMB corresponding to initial maximally
entangled states, on average, 〈EMB〉 provides a reasonable estimate for the squared concurrence
during the first half of the first time interval of entanglement decrease. However, 〈EMB〉 does
not detect the subsequent entanglement revivals (see figure 8).

4.2. Entanglement indicator based upon a local uncertainty relationship

An interesting connection between quantum separability in bi-partite systems and local
uncertainty relations has been pointed out by Hofmann and Takeuchi in [27]. These
authors showed that separable states of bi-partite quantum systems comply with certain local
uncertainty relations. In particular, all separable states (pure or mixed) of two-qubit systems
satisfy

U = δ[σ1(A) + σ1(B)]2 + δ[σ2(A) + σ2(B)]2 + δ[σ3(A) + σ3(B)]2 � 4, (23)
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Figure 9. The uncertainty-based entanglement indicator and the concurrence C against γ0t , for the
initial state 1√

2
(|01〉 − |10〉). The indicator is set equal to zero if the quantity (24) has a negative

value. All depicted quantities are dimensionless.
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Figure 10. The average of the uncertainty sum U for initial maximally entangled states as a
function of γ0t . All depicted quantities are dimensionless.

where σi(A), σi(B) i = 1, 2, 3 are the Pauli matrices corresponding to subsystems A and B,
respectively, and δO2 = 〈O2〉 − 〈O〉2 is the uncertainty of the observable O. On the basis of
(23) we can regard the quantity

4 − U

4
(24)

as an entanglement indicator. Any state with (4 − U)/4 > 0 is necessarily entangled. On
the other hand, if the above quantity is negative, the state may be entangled or separable. The
entanglement indicator (24) is of interest because it is based on quantities that are in principle
measurable.

There are some particular initial, maximally entangled states for whom the entanglement
of the time-dependent state ρ is detected (at least part of the time) by the violation of the
uncertainty relation (23). Therefore, for these states the quantity (4 − U)/4 exhibits positive
values when the state ρ has a large enough amount of entanglement. This behavior can be seen
in figure 9 for the initial state 1√

2
(|01〉 − |10〉). The situation is different when one considers

the average behavior of the uncertainty sum U over the family of maximally entangled initial
states. One can see in figure 10 that, on average, the time-dependent states arising from
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maximally entangled initial states do not violate the uncertainty relation (23). It is interesting
that, even though these states do exhibit on average (at certain times) a considerable amount
of entanglement, they behave strictly as separable states as far as the local uncertainty relation
(23) is concerned.

The general trend observed in connection with the entanglement estimators considered
here is that they tend to be less successful in detecting entanglement during the entanglement
revivals than during the initial time interval of entanglement decrease. This seems to be closely
related to the fact that during the entanglement revivals the system under consideration tends
to be more mixed than during the initial entanglement decay. The various manifestations of
entanglement tend to be weaker for states of increasing degree of mixedness. This is clearly
observed, for instance, in the case of the Minternt–Buchleitner lower bound EMB for the
squared concurrence. Indeed, the ability of this quantity to detect entanglement deteriorates
when one considers states of increasing mixedness [23].

5. Some features of the entanglement dynamics of systems of three and four qubits
interacting with an environment

In this section we are going to consider the entanglement dynamics of three-qubit systems
interacting with an environment in the non-Markovian regime. As in the two-qubit case, we
assume that each qubit interacts with its own, independent environment.

In the case of three qubits or more, the GHZ (Greenberger–Horne–Zeilinger) state and
the W state constitute two important paradigmatic examples of entangled states. The general
expression of the GHZ state is

|GHZ〉 = |0〉⊗n + |1〉⊗n

√
2

(25)

where n is the number of qubits. The n-qubit W state is

|W 〉 = 1√
n
(|100 . . . 0〉 + |010 . . . 0〉 + · · · + |000 . . . 1〉). (26)

Multi-partite entanglement measures and their applications have been the focus of
considerable research activity in recent years (see [24–26] and references therein). A useful
and practical measure for the global amount of entanglement associated with an n-qubit
state is given by the average of the (bi-partite) entanglement measures corresponding to the
2n−1 − 1 possible bi-partitions of the n-qubit system [24]. When dealing with mixed states
the ‘negativity’ provides an appropriate measure of the amount of entanglement exhibited by
a given bi-partition. The negativity is defined as

Neg. = 1

2

∑
i

(|αi | − αi), (27)

where αi are the eigenvalues of the partial transpose matrix associated with a given bi-partition.
The global, multi-partite entanglement measure given by the average (over all bi-partitions)
of the negativity will be denoted N.

In this section we consider the average behavior of three- and four-qubit evolutions with
initial states equivalent under local unitary transformations to the |GHZ〉 or the |W 〉 states. To
determine the average behavior associated with initial states locally equivalent to the n-qubit
|GHZ〉 state we generate random initial states of the form

(U1 ⊗ · · · ⊗ Un) |GHZ〉, (28)
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Figure 11. The average value of the negativity-based entanglement measure N (left) and the
average value of the linear entropy (right), against the quantity γ0t , for three-qubit initial states
locally equivalent to the GHZ state. All depicted quantities are dimensionless.
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Figure 12. The average value of the negativity-based entanglement measure N (left) and the
average value of the linear entropy (right), against the quantity γ0t , for three-qubit initial states
locally equivalent to the W state. All depicted quantities are dimensionless.

resulting from the action of independent single-qubit unitary operators acting upon each of
the n qubits of a multi-qubit system in the |GHZ〉 state. The single-qubit unitary operators
Ui (acting on the ith single qubit) are generated randomly, independently and uniformly
distributed according to the Haar measure, as described in section 3.1. Then, the average,
time-dependent properties corresponding to the above-mentioned random initial states are
computed. A similar procedure was followed to study the average properties of evolutions
corresponding to initial states locally equivalent to the n-qubit |W 〉 state.

As in the two-qubit case, the typical behavior of appropriate families of initial states
was studied for three-qubit and four-qubit systems. The most noticeable difference between
the results obtained for two qubits and those obtained for three or four qubits involves the
finite time intervals of zero entanglement between entanglement revivals. For initial maximally
entangled two-qubit states the finite time intervals of zero entanglement between entanglement
revivals disappear when one computes the concomitant average behavior, as shown in figure 1.
In contrast, in the case of initial three-qubit states locally equivalent to the |GHZ〉 or the |W 〉
states the aforementioned intervals of zero entanglement survive after the averaging procedure,
as can be appreciated in figures 11 and 12. This means that the above-mentioned finite time
intervals of entanglement disappearance are robust features of the entanglement dynamics of
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Figure 13. The negativity-based entanglement measure N for the four-qubit initial state |GHZ〉
(dotted line) and the average 〈N〉 for the family of initial states equivalent to |GHZ〉 under
local unitary transformations (continuous line) as a function of γ0t . All depicted quantities
are dimensionless.
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Figure 14. The negativity-based entanglement measure N for the four-qubit initial state |W 〉
(dotted line) and the average 〈N〉 for the family of initial states equivalent to |W 〉 under local unitary
transformations (continuous line) as a function of γ0t . All depicted quantities are dimensionless.

three-qubit systems. This is consistent with the fact that the entanglement associated with
n-qubit systems tends to become more fragile as the number of qubits increases.

Four-qubit systems were also considered. On average, initial states of four qubits
equivalent under local unitary transformations to the |GHZ〉 and the |W 〉 states behave in a
similar way as the corresponding states in the three-qubit case. This can be seen in figures 13
and 14, where the evolution of the negativity-based entanglement measure N is depicted for
the four-qubit initial states |GHZ〉 and |W 〉, respectively, together with its average value 〈N〉
for the families of initial states equivalent under local unitary transformations to those two
states. It transpires from figures 13 and 14 that the time intervals of ‘dead’ entanglement
before the entanglement revivals exhibited by the |GHZ〉 and |W 〉 states are a robust feature of
the entire families of initial states locally equivalent to those two states, that is clearly present
in their average behavior. This, again, illustrates the increasing entanglement fragility that
accompanies an increasing number of qubits.

The main purpose of the present effort was to explore some aspects of the entanglement
sudden death and subsequent entanglement revival exhibited by multi-qubit systems interacting
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Figure 15. Evolution of the negativity-based entanglement measure N for the three-qubit initial
state α|000〉 +

√
1 − α2|111〉 with α2 = 1

3 (dotted line) and the average 〈N〉 for the family of
initial states equivalent to the alluded state under local unitary transformations (continuous line),
for λ = 0.1γ0. All depicted quantities are dimensionless.

with an environment in a non-Markovian regime. Consequently, we have focused on the
case of λ = 0.01γ0, where the aforementioned phenomena are clearly visible. As a
general trend, when one considers larger values of the ratio λ/γ0 (corresponding to less
non-Markovian regimes) the alluded phenomena are less pronounced, with shorter periods of
‘dead’ entanglement. However, we have also considered the case λ = 0.1γ0 and our numerical
results indicate that the robustness of the periods of dead entanglement before entanglement
revivals for systems of more than two qubits also holds for smaller values of the ratio λ/γ0,
even if the lengths of these periods are much shorter than in the λ = 0.01γ0 case.

For example, the behavior of the negativity-based entanglement measure N for the three-
qubit initial state (with α2 = 1

3 )

α|000〉 +
√

1 − α2|111〉 (29)

together with its average value 〈N〉 for the family of initial states equivalent under local unitary
transformations to (29) are plotted in figure 15. It is clear from this figure that the period of
zero entanglement between the entanglement sudden death and its sudden revival exhibited by
the initial state (29) is also present on the average behavior corresponding to the initial states
locally equivalent to (29).

6. Conclusions

We have explored some entanglement-related features of the dynamics of two-qubit, three-
qubit, and four-qubit systems interacting with a non-Markovian environment. Our main goal
was to explore some entanglement properties of the alluded systems related to the phenomena
of entanglement sudden death followed by entanglement sudden revival, which constitute
remarkable effects appearing in the alluded systems for small enough values of the ratio λ/γ0.
For these reasons, we have focused on a non-Markovian case characterized by λ = 0.01γ0,
and our conclusions correspond mainly to this kind of scenarios which are well into the
non-Markovian regime.

We have focused upon the average, typical behavior associated with some relevant families
of initial states, such as the set of maximally entangled two-qubit states, or the states locally
equivalent to the |GHZ〉 state in the three-qubit and four-qubit cases.
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In the case of two qubits the average, typical behavior corresponding to maximally
entangled initial states, or the one corresponding to pure, partially entangled states with
a given amount of entanglement, does not have finite time intervals of zero entanglement
between entanglement revivals as is the case for some particular initial states belonging to
the alluded families. In contrast, when investigating the dynamics of entanglement associated
with the families of initial states of three or four qubits locally equivalent to the |GHZ〉 and
to the |W 〉 states, we found that the finite intervals of zero entanglement are still present
in the average behavior. Consequently, the phenomena of entanglement sudden death and
subsequent entanglement revival are robust properties of the evolutions associated with the
above-mentioned families of initial states of three or four qubits. These features of the
entanglement dynamics of three-qubit and four-qubit systems are consistent with the fact that,
in general, entanglement becomes more fragile as the number of qubits of a system increases.

We investigated the connection between the time evolution of the amount of entanglement
exhibited by the multi-qubit system on the one hand, and its global degree of mixedness (as
measured by the total linear entropy SL) on the other one. As a general trend, the entanglement
exhibited by multi-partite quantum systems tends to decrease as the degree of mixedness
increases. However, except for the initial period of entanglement decrease, the systems
considered here tend to exhibit the largest amount of entanglement simultaneously with the
largest degrees of mixedness. Indeed, during the entanglement revivals entanglement and
mixedness tend to increase and decrease together. We have determined the trajectory followed
by the multi-qubit systems (for various families of initial states) in the (〈SL〉 − 〈C〉)-plane.
In all the cases studied, for two qubits, three qubits and four qubits, these trajectories exhibit
the shape of an inverted ‘C’ with two branches, one corresponding to the initial phase of
entanglement decrease, and the second branch corresponding to the entanglement revivals. In
the case of maximally entangled initial states of two qubits, the first branch is relatively close
to the MEMS curve, while the second branch departs drastically from it.

In the case of two qubits the behavior of two entanglement indicators based upon
measurable quantities was also examined. We considered the Minternt–Buchleitner lower
bound EMB for the squared concurrence and an entanglement indicator based on the violation
of a local uncertainty relation. For the initial state 1√

2
(|00〉 + |11〉), the quantity EMB

exhibited ‘sudden death’ and one ‘revival’. On the other hand, the average behavior of EMB

corresponding to maximally entangled initial states has sudden death, but no revival. During
the period of entanglement decrease EMB provides a reasonable estimate for the squared
concurrence. The estimator based on the violation of local uncertainty relations does detect
the entanglement of the evolving two-qubit state for some initial conditions. However, its
average behavior for initial maximally entangled states corresponds to separable states. These
findings are consistent with the results reported by Bellomo et al in [12], where it was shown
that even at times when the two-qubit system still has a considerable amount of entanglement
it behaves ‘classically’, as far as the Bell inequalities are concerned. Our present results show
that the time-dependent state of the two-qubit system, particularly during the entanglement
revivals, also fails to exhibit other manifestations of entanglement, such as positive values of
the Minternt and Buchleitner indicator EMB, or the violation of local uncertainty relations.
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